gogo
Amazon cover image
Image from Amazon.com

Atomic absorption spectrometry : an introduction / Alfredo Sanz-Medel and Rosario Pereiro. [electronic resource]

By: Contributor(s): Material type: TextTextPublisher: New York, [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2014Edition: Second editionDescription: 1 online resource (xiii, 190 pages) : illustrationsISBN:
  • 9781606504376
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 543.0858 23
LOC classification:
  • QD96.A8 S262 2014
Online resources:
Contents:
1. An introduction to analytical atomic spectrometry -- 1.1 Basic interactions of electromagnetic radiation with atoms for chemical analysis -- 1.2 Atomic line spectra and their origin -- 1.3 Atomic line characteristics -- 1.4 Atomic line spectral width -- 1.4.1 Natural broadening of lines -- 1.4.2 Doppler broadening -- 1.4.3 Lorentz broadening -- 1.4.4 Self-absorption effects -- 1.4.5 Other broadening processes -- 1.5 A comparative overview of analytical atomic spectrometric techniques -- 1.5.1 Dissolved sample analysis techniques -- 1.5.2 Direct solid analysis techniques --
2. Theory and basic concepts in atomic absorption spectrometry -- 2.1 General introduction -- 2.2 The basic atomic absorption spectrometry experiment -- 2.3 The absorption coefficient concept -- 2.4 Quantitative analysis by atomic absorption spectrometry -- 2.5 Interferences in flame analytical atomic spectrometry techniques -- 2.5.1 Spectral interferences -- 2.5.2 Physical (transport) interferences -- 2.5.3 Chemical interferences -- 2.5.4 Ionization interferences -- 2.5.5 Temperature variations in the atomizer -- 2.5.6 Light scattering and unspecific absorptions -- 2.5.7 Quenching of the fluorescence -- 2.6 Analytical performance characteristics of AAS -- 2.6.1 Sensitivity and detection limits -- 2.6.2 Selectivity of the three flame-based techniques -- 2.6.3 Accuracy and precision -- 2.6.4 Analytical linear range -- 2.6.5 Versatility and sample throughput -- 2.6.7 Robustness and availability of well-proven methodologies --
3. Basic components of atomic absorption spectrometric instruments -- 3.1 Introduction: single-beam and double-beam instruments -- 3.2 Primary radiation sources -- 3.2.1 Hollow cathode lamps -- 3.2.1.1 Details of the components of a HCL -- 3.2.1.2 HCL operation -- 3.2.1.3 Multi-element HCLs -- 3.2.2 Electrodeless discharge lamps -- 3.2.3 Boosted discharge lamps -- 3.2.4 Diode lasers -- 3.2.5 Continuous sources -- 3.3 Atomizers: a general view -- 3.4 Wavelength selectors -- 3.5 Detectors -- 3.6 Background correctors -- 3.6.1 Deuterium background corrector -- 3.6.2 Zeeman correction -- 3.6.3 Smith-Hieftje correction --
4. Flame atomic absorption spectrometry -- 4.1 Introduction -- 4.2 The atomizer unit in flame atomic absorption spectrometry -- 4.2.1 Nebulizer, nebulization chamber, and burner -- 4.2.2 Flame -- 4.2.3 Special sampling techniques -- 4.3 Flame atomic absorption instrumentation -- 4.3.1 Flame atomic absorption spectrometers -- 4.3.2 Accessories -- 4.3.2.1 Autosamplers -- 4.3.2.2 Atom concentrator tube or slotted tube atom trap -- 4.3.2.3 High-solid analyzer -- 4.3.2.4 Flame microsampler -- 4.3.2.5 Automatic burner rotation -- 4.4 Analytical performance characteristics and interferences -- 4.4.1 Spectral interferences -- 4.4.2 Nonspectral interferences -- 4.4.3 Calibration in flame atomic absorption spectrometry -- 4.4.4 Analytical figures of merit -- 4.4.5 Use of organic solvents -- 4.5 Applications and example case studies -- 4.5.1 Determination of calcium in milk -- 4.5.2 Determination of molybdenum in fertilizers -- 4.5.3 Determination of lead in gasoline -- 4.5.4 Determination of boron, phosphorus, and sulfur by high-resolution continuum source FAAS for plant analysis --
5. Electrothermal atomic absorption spectrometry -- 5.1 Introduction -- 5.2 The electrothermal atomizer -- 5.2.1 The atomization tube -- 5.2.2 Side-heated atomizers -- 5.3 Basic steps in analysis by electrothermal atomic absorption spectrometry: the temperature program -- 5.4 Instrumentation -- 5.4.1 Sample-introduction system -- 5.4.2 Instrumental background correction -- 5.4.3 Data acquisition and treatment -- 5.5 Interferences -- 5.5.1 Spectral interferences -- 5.5.2 Nonspectral interferences -- 5.6 Chemical modifiers -- 5.7 Atomization from solids and slurries -- 5.8 Analytical performance characteristics of electrothermal atomic absorption spectrometric methods -- 5.9 Applications and example case studies -- 5.9.1 Determination of lead in human urine and blood -- 5.9.2 Determination of selenium in human milk -- 5.9.3 Determination of sulfur in coal and ash slurry --
6. Hydride generation and cold-vapor atomic absorption spectrometry -- 6.1 Introduction -- 6.2 Volatile hydride generation by tetrahydroborate (III) in aqueous media -- 6.2.1 Mechanisms of hydride formation -- 6.2.2 Basic instrumentation -- 6.2.3 Limits of detection -- 6.2.4 Selectivity: sources of interferences -- 6.3 Electrochemical generation of volatile hydrides -- 6.4 Cold-vapor generation -- 6.4.1 Mercury -- 6.4.2 Cadmium -- 6.5 Trapping/preconcentration of volatilized analytes -- 6.6 Applications and example case studies -- 6.6.1 Determination of arsenic in waters -- 6.6.2 Determination of mercury and methylmercury in hair -- 6.6.3 Determination of selenium in bean and soil samples using hydride generation, electrothermal atomic absorption spectrometry --
7. Flow analysis and atomic absorption spectrometry -- 7.1 Introduction -- 7.2 Flow injection analysis and atomic absorption spectrometry -- 7.3 Basic instrument components: sample introduction unit, propulsion system, and connecting tubes -- 7.3.1 Sample introduction unit -- 7.3.2 Propulsion system -- 7.3.3 Connecting tubes -- 7.4 Simple common manifolds: dilution, reagent addition, and calibration -- 7.5 Solid-liquid separation and preconcentration -- 7.5.1 Sorption -- 7.5.2 Precipitation and coprecipitation -- 7.6 Gas-phase formation strategies -- 7.6.1 Flow systems for the formation of volatile derivatives of the analyte(s) -- 7.6.2 Approaches for preconcentration in the gas phase -- 7.7 Miniaturized preconcentration methods based on liquid-liquid extraction -- 7.8 Sample digestion -- 7.8.1 Online photo-oxidation flow systems -- 7.8.2 Online microwave-assisted digestion -- 7.9 Chromatographic separations coupled online to atomic absorption spectrometry -- 7.10 Applications and example case studies -- 7.10.1 Online aluminium preconcentration and its application to the determination of the metal in dialysis concentrates -- 7.10.2 Indirect atomic absorption spectrometric determination of iodine in milk products -- 7.10.3 High-performance liquid chromatography, microwave digestion, hydride generation, AAS for inorganic and organic arsenic speciation in fish tissue --
8. Emerging fields of applications, chemometrics, quality-control and troubleshooting -- 8.1 Emerging fields of atomic absorption spectrometry applications -- 8.2 Basic chemometric techniques in AAS -- 8.3 Quality-control guidelines and troubleshooting -- 8.3.1 Flame AAS -- 8.3.1.1 Light system -- 8.3.1.2 Nebulizer and burner system -- 8.3.1.3 System cleanliness -- 8.3.2 Electrothermal AAS -- 8.3.2.1 Autosampler -- 8.3.2.2 Furnace workhead -- 8.3.2.3 Background correction --
Appendix A. Buyer's guide -- Appendix B. Glossary of terms -- Appendix C. Standards -- References -- Index.
Abstract: We have restricted the scope of this tutorial book to the study of fundamentals and practical use of such popular and efficient atomic absorption techniques. An up-to-date account of AAS fundamentals, instrumentation, special techniques, and elemental analysis applications is provided here. To do so, the atomic absorption experiment and the photophysical law governing such photon absorption processes are revised first. Then, the main components or units, that, when adequately assembled, constitute an AAS instrument, are described in detail to set the foundations of modern spectrometers for AAS measurements.
Holdings
Item type Current library Call number Status Date due Barcode
Ebook TUS: Midlands, Main Library Athlone Online eBook (Browse shelf(Opens below)) Available

Includes bibliographical references (pages 179-184) and index.

1. An introduction to analytical atomic spectrometry -- 1.1 Basic interactions of electromagnetic radiation with atoms for chemical analysis -- 1.2 Atomic line spectra and their origin -- 1.3 Atomic line characteristics -- 1.4 Atomic line spectral width -- 1.4.1 Natural broadening of lines -- 1.4.2 Doppler broadening -- 1.4.3 Lorentz broadening -- 1.4.4 Self-absorption effects -- 1.4.5 Other broadening processes -- 1.5 A comparative overview of analytical atomic spectrometric techniques -- 1.5.1 Dissolved sample analysis techniques -- 1.5.2 Direct solid analysis techniques --

2. Theory and basic concepts in atomic absorption spectrometry -- 2.1 General introduction -- 2.2 The basic atomic absorption spectrometry experiment -- 2.3 The absorption coefficient concept -- 2.4 Quantitative analysis by atomic absorption spectrometry -- 2.5 Interferences in flame analytical atomic spectrometry techniques -- 2.5.1 Spectral interferences -- 2.5.2 Physical (transport) interferences -- 2.5.3 Chemical interferences -- 2.5.4 Ionization interferences -- 2.5.5 Temperature variations in the atomizer -- 2.5.6 Light scattering and unspecific absorptions -- 2.5.7 Quenching of the fluorescence -- 2.6 Analytical performance characteristics of AAS -- 2.6.1 Sensitivity and detection limits -- 2.6.2 Selectivity of the three flame-based techniques -- 2.6.3 Accuracy and precision -- 2.6.4 Analytical linear range -- 2.6.5 Versatility and sample throughput -- 2.6.7 Robustness and availability of well-proven methodologies --

3. Basic components of atomic absorption spectrometric instruments -- 3.1 Introduction: single-beam and double-beam instruments -- 3.2 Primary radiation sources -- 3.2.1 Hollow cathode lamps -- 3.2.1.1 Details of the components of a HCL -- 3.2.1.2 HCL operation -- 3.2.1.3 Multi-element HCLs -- 3.2.2 Electrodeless discharge lamps -- 3.2.3 Boosted discharge lamps -- 3.2.4 Diode lasers -- 3.2.5 Continuous sources -- 3.3 Atomizers: a general view -- 3.4 Wavelength selectors -- 3.5 Detectors -- 3.6 Background correctors -- 3.6.1 Deuterium background corrector -- 3.6.2 Zeeman correction -- 3.6.3 Smith-Hieftje correction --

4. Flame atomic absorption spectrometry -- 4.1 Introduction -- 4.2 The atomizer unit in flame atomic absorption spectrometry -- 4.2.1 Nebulizer, nebulization chamber, and burner -- 4.2.2 Flame -- 4.2.3 Special sampling techniques -- 4.3 Flame atomic absorption instrumentation -- 4.3.1 Flame atomic absorption spectrometers -- 4.3.2 Accessories -- 4.3.2.1 Autosamplers -- 4.3.2.2 Atom concentrator tube or slotted tube atom trap -- 4.3.2.3 High-solid analyzer -- 4.3.2.4 Flame microsampler -- 4.3.2.5 Automatic burner rotation -- 4.4 Analytical performance characteristics and interferences -- 4.4.1 Spectral interferences -- 4.4.2 Nonspectral interferences -- 4.4.3 Calibration in flame atomic absorption spectrometry -- 4.4.4 Analytical figures of merit -- 4.4.5 Use of organic solvents -- 4.5 Applications and example case studies -- 4.5.1 Determination of calcium in milk -- 4.5.2 Determination of molybdenum in fertilizers -- 4.5.3 Determination of lead in gasoline -- 4.5.4 Determination of boron, phosphorus, and sulfur by high-resolution continuum source FAAS for plant analysis --

5. Electrothermal atomic absorption spectrometry -- 5.1 Introduction -- 5.2 The electrothermal atomizer -- 5.2.1 The atomization tube -- 5.2.2 Side-heated atomizers -- 5.3 Basic steps in analysis by electrothermal atomic absorption spectrometry: the temperature program -- 5.4 Instrumentation -- 5.4.1 Sample-introduction system -- 5.4.2 Instrumental background correction -- 5.4.3 Data acquisition and treatment -- 5.5 Interferences -- 5.5.1 Spectral interferences -- 5.5.2 Nonspectral interferences -- 5.6 Chemical modifiers -- 5.7 Atomization from solids and slurries -- 5.8 Analytical performance characteristics of electrothermal atomic absorption spectrometric methods -- 5.9 Applications and example case studies -- 5.9.1 Determination of lead in human urine and blood -- 5.9.2 Determination of selenium in human milk -- 5.9.3 Determination of sulfur in coal and ash slurry --

6. Hydride generation and cold-vapor atomic absorption spectrometry -- 6.1 Introduction -- 6.2 Volatile hydride generation by tetrahydroborate (III) in aqueous media -- 6.2.1 Mechanisms of hydride formation -- 6.2.2 Basic instrumentation -- 6.2.3 Limits of detection -- 6.2.4 Selectivity: sources of interferences -- 6.3 Electrochemical generation of volatile hydrides -- 6.4 Cold-vapor generation -- 6.4.1 Mercury -- 6.4.2 Cadmium -- 6.5 Trapping/preconcentration of volatilized analytes -- 6.6 Applications and example case studies -- 6.6.1 Determination of arsenic in waters -- 6.6.2 Determination of mercury and methylmercury in hair -- 6.6.3 Determination of selenium in bean and soil samples using hydride generation, electrothermal atomic absorption spectrometry --

7. Flow analysis and atomic absorption spectrometry -- 7.1 Introduction -- 7.2 Flow injection analysis and atomic absorption spectrometry -- 7.3 Basic instrument components: sample introduction unit, propulsion system, and connecting tubes -- 7.3.1 Sample introduction unit -- 7.3.2 Propulsion system -- 7.3.3 Connecting tubes -- 7.4 Simple common manifolds: dilution, reagent addition, and calibration -- 7.5 Solid-liquid separation and preconcentration -- 7.5.1 Sorption -- 7.5.2 Precipitation and coprecipitation -- 7.6 Gas-phase formation strategies -- 7.6.1 Flow systems for the formation of volatile derivatives of the analyte(s) -- 7.6.2 Approaches for preconcentration in the gas phase -- 7.7 Miniaturized preconcentration methods based on liquid-liquid extraction -- 7.8 Sample digestion -- 7.8.1 Online photo-oxidation flow systems -- 7.8.2 Online microwave-assisted digestion -- 7.9 Chromatographic separations coupled online to atomic absorption spectrometry -- 7.10 Applications and example case studies -- 7.10.1 Online aluminium preconcentration and its application to the determination of the metal in dialysis concentrates -- 7.10.2 Indirect atomic absorption spectrometric determination of iodine in milk products -- 7.10.3 High-performance liquid chromatography, microwave digestion, hydride generation, AAS for inorganic and organic arsenic speciation in fish tissue --

8. Emerging fields of applications, chemometrics, quality-control and troubleshooting -- 8.1 Emerging fields of atomic absorption spectrometry applications -- 8.2 Basic chemometric techniques in AAS -- 8.3 Quality-control guidelines and troubleshooting -- 8.3.1 Flame AAS -- 8.3.1.1 Light system -- 8.3.1.2 Nebulizer and burner system -- 8.3.1.3 System cleanliness -- 8.3.2 Electrothermal AAS -- 8.3.2.1 Autosampler -- 8.3.2.2 Furnace workhead -- 8.3.2.3 Background correction --

Appendix A. Buyer's guide -- Appendix B. Glossary of terms -- Appendix C. Standards -- References -- Index.

Restricted to libraries which purchase an unrestricted PDF download via an IP.

We have restricted the scope of this tutorial book to the study of fundamentals and practical use of such popular and efficient atomic absorption techniques. An up-to-date account of AAS fundamentals, instrumentation, special techniques, and elemental analysis applications is provided here. To do so, the atomic absorption experiment and the photophysical law governing such photon absorption processes are revised first. Then, the main components or units, that, when adequately assembled, constitute an AAS instrument, are described in detail to set the foundations of modern spectrometers for AAS measurements.

Title from PDF title page (viewed on October 14, 2014).

Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

Powered by Koha