gogo
Amazon cover image
Image from Amazon.com

Surface engineering and technology for biomedical implants / Yoshiki Oshida. [electronic resource]

By: Material type: TextTextPublisher: New York, [New York] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2014Description: 1 online resource (297 pages)ISBN:
  • 9781606506288
Subject(s): Genre/Form: Additional physical formats: Print version:: No titleDDC classification:
  • 617.95 23
LOC classification:
  • RD132 .O838 2014
Online resources:
Contents:
1. Introduction -- 1.1 Literature review results -- 1.2 Acceptability and prevalence of implants -- 1.3 Overview of implant technology -- References --
2. Implantable materials -- 2.1 Introduction -- 2.2 Metallic biomaterials -- 2.3 Polymeric biomaterials -- 2.4 Ceramic biomaterials -- 2.5 Composites -- References --
3. Interfacial reactions between vital tissue and nonvital implant surfaces -- 3.1 Introduction -- 3.2 Toxicity -- 3.2.1 Chemical toxicity -- 3.2.2 Biological toxicity -- 3.2.3 Physical toxicity -- 3.3 Allergic reaction -- 3.4 Compatibility -- 3.4.1 Hemocompatibility -- 3.4.2 Cytocompatibility -- 3.5 Bone healing -- 3.5.1 Cellular response to biomaterials -- 3.5.2 Cell attachment, adhesion, and spreading -- 3.5.3 Cell proliferation and differentiation -- 3.5.4 Bone ingrowth -- 3.5.5 Bone healing and grafting -- 3.5.6 Osseointegration -- 3.6 Loosening implants and infection -- References --
4. Requirements for successful implant systems -- 4.1 Introduction -- 4.2 Biological compatibility -- 4.3 Biomechanical compatibility -- 4.4 Morphological compatibility -- References --
5. Surface modification -- 5.1 Introduction -- 5.2 Nature of surface and interface -- 5.3 Surface modification technologies -- 5.3.1 Mechanical modification -- 5.3.2 Chemical and electrochemical modifications -- 5.3.3 Physical modification -- 5.3.4 Thermal modification -- 5.3.5 Combined technology -- 5.4 Coating materials and materials preparation -- 5.4.1 Metallic materials -- 5.4.2 Polymeric materials -- 5.4.3 Ceramics--metallic oxides, nitrides, and carbides -- 5.4.4 Ceramics--nonmetallic compounds -- 5.4.5 Composites, hybrids, functional gradient materials, and biomimetic materials -- 5.4.6 Others -- References --
6. Evaluation and characterization of modified surfaces -- 6.1 Introduction -- 6.2 Safety concerns and testing -- 6.3 Magnetic resonance imaging safety and image compatibility -- 6.4 Hydrophilicity and hydrophobicity -- 6.5 Blood compatibility -- 6.6 Cell adhesion and adhesive strength -- 6.7 Osseointegration -- 6.8 Biomimetic coating -- 6.9 Measures against toxic ion elution -- 6.10 Evaluation of biocompatibility -- 6.11 Mechanical properties -- 6.12 Temperature changes -- 6.13 Corrosion behavior -- 6.14 Effect of sterilization -- 6.15 Strontium effect -- 6.16 Characterization of HA -- 6.17 Characterization of other bio-ceramics -- 6.18 Surface texturing and topology -- 6.19 Retrieved implants -- References --
7. New materials, new structures, and new technologies -- 7.1 Introduction -- 7.2 New materials -- 7.2.1 Bone materials -- 7.2.2 Porous materials -- 7.2.3 Nanomaterials -- 7.2.4 Functionally gradient materials -- 7.3 New structures -- 7.3.1 Nanostructures -- 7.3.2 Biomimetic functionalization -- 7.4 New technologies -- 7.4.1 Tissue engineering -- 7.4.2 Three-dimensional printing -- 7.4.3 Laser technologies -- 7.4.4 Electrospinning -- 7.4.5 Atmospheric plasma treatment -- 7.4.6 Friction stir welding -- 7.4.7 Near-net shape (NNS) forming -- 7.4.8 Miscellaneous --
References -- Index.
Abstract: As society is increasingly concerned with quality of life for an ever-growing elderly population and those with sports and military injuries, greater attention is being paid to managing diseases and pains, as well as treating these populations. Orthopedics and dental implants still face many challenges to facilitate the aged society, in particular, because implant receiving vital hard tissue gradually deteriorates (in the sense of reduced bone density and quality). In addition, special developments in materials, as well as treatment techniques, are urgently needed for dental/medical implant candidates who have already developed serious or lifestyle-related diseases which are contraindicative to implant treatments.
Holdings
Item type Current library Call number Status Date due Barcode
Ebook TUS: Midlands, Main Library Athlone Online eBook (Browse shelf(Opens below)) Available

Includes bibliographical references and index.

1. Introduction -- 1.1 Literature review results -- 1.2 Acceptability and prevalence of implants -- 1.3 Overview of implant technology -- References --

2. Implantable materials -- 2.1 Introduction -- 2.2 Metallic biomaterials -- 2.3 Polymeric biomaterials -- 2.4 Ceramic biomaterials -- 2.5 Composites -- References --

3. Interfacial reactions between vital tissue and nonvital implant surfaces -- 3.1 Introduction -- 3.2 Toxicity -- 3.2.1 Chemical toxicity -- 3.2.2 Biological toxicity -- 3.2.3 Physical toxicity -- 3.3 Allergic reaction -- 3.4 Compatibility -- 3.4.1 Hemocompatibility -- 3.4.2 Cytocompatibility -- 3.5 Bone healing -- 3.5.1 Cellular response to biomaterials -- 3.5.2 Cell attachment, adhesion, and spreading -- 3.5.3 Cell proliferation and differentiation -- 3.5.4 Bone ingrowth -- 3.5.5 Bone healing and grafting -- 3.5.6 Osseointegration -- 3.6 Loosening implants and infection -- References --

4. Requirements for successful implant systems -- 4.1 Introduction -- 4.2 Biological compatibility -- 4.3 Biomechanical compatibility -- 4.4 Morphological compatibility -- References --

5. Surface modification -- 5.1 Introduction -- 5.2 Nature of surface and interface -- 5.3 Surface modification technologies -- 5.3.1 Mechanical modification -- 5.3.2 Chemical and electrochemical modifications -- 5.3.3 Physical modification -- 5.3.4 Thermal modification -- 5.3.5 Combined technology -- 5.4 Coating materials and materials preparation -- 5.4.1 Metallic materials -- 5.4.2 Polymeric materials -- 5.4.3 Ceramics--metallic oxides, nitrides, and carbides -- 5.4.4 Ceramics--nonmetallic compounds -- 5.4.5 Composites, hybrids, functional gradient materials, and biomimetic materials -- 5.4.6 Others -- References --

6. Evaluation and characterization of modified surfaces -- 6.1 Introduction -- 6.2 Safety concerns and testing -- 6.3 Magnetic resonance imaging safety and image compatibility -- 6.4 Hydrophilicity and hydrophobicity -- 6.5 Blood compatibility -- 6.6 Cell adhesion and adhesive strength -- 6.7 Osseointegration -- 6.8 Biomimetic coating -- 6.9 Measures against toxic ion elution -- 6.10 Evaluation of biocompatibility -- 6.11 Mechanical properties -- 6.12 Temperature changes -- 6.13 Corrosion behavior -- 6.14 Effect of sterilization -- 6.15 Strontium effect -- 6.16 Characterization of HA -- 6.17 Characterization of other bio-ceramics -- 6.18 Surface texturing and topology -- 6.19 Retrieved implants -- References --

7. New materials, new structures, and new technologies -- 7.1 Introduction -- 7.2 New materials -- 7.2.1 Bone materials -- 7.2.2 Porous materials -- 7.2.3 Nanomaterials -- 7.2.4 Functionally gradient materials -- 7.3 New structures -- 7.3.1 Nanostructures -- 7.3.2 Biomimetic functionalization -- 7.4 New technologies -- 7.4.1 Tissue engineering -- 7.4.2 Three-dimensional printing -- 7.4.3 Laser technologies -- 7.4.4 Electrospinning -- 7.4.5 Atmospheric plasma treatment -- 7.4.6 Friction stir welding -- 7.4.7 Near-net shape (NNS) forming -- 7.4.8 Miscellaneous --

References -- Index.

Restricted to libraries which purchase an unrestricted PDF download via an IP.

As society is increasingly concerned with quality of life for an ever-growing elderly population and those with sports and military injuries, greater attention is being paid to managing diseases and pains, as well as treating these populations. Orthopedics and dental implants still face many challenges to facilitate the aged society, in particular, because implant receiving vital hard tissue gradually deteriorates (in the sense of reduced bone density and quality). In addition, special developments in materials, as well as treatment techniques, are urgently needed for dental/medical implant candidates who have already developed serious or lifestyle-related diseases which are contraindicative to implant treatments.

Title from PDF title page (viewed on April 24, 2014).

Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

Powered by Koha