gogo

Applied thermodynamics of fluids [electronic resource] / edited by A.R.H. Goodwin, J.V. Sengers, C.J. Peters.

Contributor(s): Material type: TextTextPublication details: Cambridge : RSC Pub., c2010.Description: xxiii, 509 p. : illSubject(s): Genre/Form: LOC classification:
  • QC145.4.T5 A67 2010
Online resources:
Contents:
Machine generated contents note: ch. 1 Introduction / J. Peters -- References -- ch. 2 Fundamental Considerations / Cor J. Peters -- 2.1. Introduction -- 2.2. Basic Thermodynamics -- 2.2.1. Homogeneous Functions -- 2.2.2. Thermodynamic Properties from Differentiation of Fundamental Equations -- 2.3. Deviation Functions -- 2.3.1. Residual Functions -- 2.3.2. Evaluation of Residual Functions -- 2.4. Mixing and Departure Functions -- 2.4.1. Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables -- 2.4.2. Departure Functions with Temperature, Pressure and Composition as the Independent Variables -- 2.5. Mixing and Excess Functions -- 2.6. Partial Molar Properties -- 2.7. Fugacity and Fugacity Coefficients -- 2.8. Activity Coefficients -- 2.9. The Phase Rule -- 2.10. Equilibrium Conditions -- 2.10.1. Phase Equilibria -- 2.10.2. Chemical Equilibria -- 2.11. Stability and the Critical State -- 2.11.1. Densities and Fields -- 2.11.2. Stability.
2.11.3. Critical State -- References -- ch. 3 The Virial Equation of State / J. P. Martin Trusler -- 3.1. Introduction -- 3.1.1. Temperature Dependence of the Virial Coefficients -- 3.1.2. Composition Dependence of the Virial Coefficients -- 3.1.3. Convergence of the Virial Series -- 3.1.4. The Pressure Series -- 3.2. Theoretical Background -- 3.2.1. Virial Coefficients of Hard-Core-Square-Well Molecules -- 3.3. Thermodynamic Properties of Gases -- 3.3.1. Perfect-gas and Residual Properties -- 3.3.2. Helmholtz Energy and Gibbs Energy -- 3.3.3. Perfect-Gas Properties -- 3.3.4. Residual Properties -- 3.4. Estimation of Second and Third Virial Coefficients -- 3.4.1. Application of Intermolecular Potential-energy Functions -- 3.4.2. Corresponding-states Methods -- References -- ch. 4 Cubic and Generalized van der Waals Equations of State / Ioannis G. Economou -- 4.1. Introduction -- 4.2. Cubic Equation of State Formulation -- 4.2.1. The van der Waals Equation of State (1873) -- 4.2.2. The Redlich and Kwong Equation of State (1949).
4.2.3. The Soave, Redlich and Kwong Equation of State (1972) -- 4.2.4. The Peng and Robinson Equation of State (1976) -- 4.2.5. The Patel and Teja (PT) Equation of State (1982) -- 4.2.6. The α Parameter -- 4.2.7. Volume Translation -- 4.2.8. The Elliott, Suresh and Donohue (ESD) Equation of State (1990) -- 4.2.9. Higher-Order Equations of State Rooted to the Cubic Equations of State -- 4.2.10. Extension of Cubic Equations of State to Mixtures -- 4.3. Applications -- 4.3.1. Pure Components -- 4.3.2. Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions -- 4.3.3. Chemical Industry -- Polar and Hydrogen Bonding Fluids -- 4.3.4. Polymers -- 4.3.5. Transport Properties -- 4.4. Conclusions -- References -- ch. 5 Mixing and Combining Rules / Stanley I. Sandler -- 5.1. Introduction -- 5.2. The Virial Equation of State -- 5.3. Cubic Equations of State -- 5.3.1. Mixing Rules -- 5.3.2. Combining Rules -- 5.3.3. Non-Quadratic Mixing and Combining Rules -- 5.3.4. Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.
5.4. Multi-Parameter Equations of State -- 5.4.1. Benedict, Webb, and Rubin Equation of State -- 5.4.2. Generalization with the Acentric Factor -- 5.4.3. Helmholtz-Function Equations of State -- 5.5. Mixing Rules for Hard Spheres and Association -- 5.5.1. Mixing and Combining Rules for SAFT -- 5.5.2. Cubic Plus Association Equation of State -- References -- ch. 6 The Corresponding-States Principle / James F. Ely -- 6.1. Introduction -- 6.2. Theoretical Considerations -- 6.3. Determination of Shape Factors -- 6.3.1. Other Reference Fluids -- 6.3.2. Exact Shape Factors -- 6.3.3. Shape Factors from Generalized Equations of State -- 6.4. Mixtures -- 6.4.1. van der Waals One-Fluid Theory -- 6.4.2. Mixture Corresponding-States Relations -- 6.5. Applications of Corresponding-States Theory -- 6.5.1. Extended Corresponding-States for Natural Gas Systems -- 6.5.2. Extended Lee-Kesler -- 6.5.3. Generalized Crossover Cubic Equation of State -- 6.6. Conclusions -- References -- ch. 7 Thermodynamics of Fluids at Meso and Nano Scales / Christopher E. Bertrand.
7.1. Introduction -- 7.2. Thermodynamic Approach to Meso-Heterogeneous Systems -- 7.2.1. Equilibrium Fluctuations -- 7.2.2. Local Helmholtz Energy -- 7.3. Applications of Meso-Thermodynamics -- 7.3.1. Van der Waals Theory of a Smooth Interface -- 7.3.2. Polymer Chain in a Dilute Solution -- 7.3.3. Building a Nanoparticle Through Self Assembly -- 7.3.4. Modulated Fluid Phases -- 7.4. Meso-Thermodynamics of Criticality -- 7.4.1. Critical Fluctuations -- 7.4.2. Scaling Relations -- 7.4.3. Near-Critical Interface -- 7.4.4. Divergence of Tolman's Length -- 7.5. Competition of Meso-Scales -- 7.5.1. Crossover to Tricriticality in Polymer Solutions -- 7.5.2. Tolman's Length in Polymer Solutions -- 7.5.3. Finite-size Scaling -- 7.6. Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation -- 7.6.1. Relaxation of Fluctuations -- 7.6.2. Critical Slowing Down -- 7.6.3. Homogeneous Nucleation -- 7.6.4. Spinodal Decomposition -- 7.7. Conclusion -- References -- ch. 8 SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo.
8.1. Introduction -- 8.2. Statistical Mechanical Theories of Association and Wertheim's Theory -- 8.3. SAFT Equations of State -- 8.3.1. SAFT-HS and SAFT-HR -- 8.3.2. Soft-SAFT -- 8.3.3. SAFT-VR -- 8.3.4. PC-SAFT -- 8.3.5. Summary -- 8.4. Extensions of the SAFT Approach -- 8.4.1. Modelling the Critical Region -- 8.4.2. Polar Fluids -- 8.4.3. Ion-Containing Fluids -- 8.4.4. Modelling Inhomogeneous Fluids -- 8.4.5. Dense Phases: Liquid Crystals and Solids -- 8.5. Parameter Estimation: Towards more Predictive Approaches -- 8.5.1. Pure-component Parameter Estimation -- 8.5.2. Use of Quantum Mechanics in SAFT Equations of State -- 8.5.3. Unlike Binary Intermolecular Parameters -- 8.6. SAFT Group-Contribution Approaches -- 8.6.1. Homonuclear Group-Contribution Models in SAFT -- 8.6.2. Heteronuclear Group Contribution Models in SAFT -- 8.7. Concluding Remarks -- References -- ch. 9 Polydisperse Fluids / Dieter Browarzik -- 9.1. Introduction -- 9.2. Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.
9.3. Approaches to Polydispersity -- 9.3.1. The Pseudo-component Method -- 9.3.2. Continuous Thermodynamics -- 9.4. Application to Real Systems -- 9.4.1. Polymer Systems -- 9.4.2. Petroleum Fluids, Asphaltenes, Waxes and Other Applications -- 9.5. Conclusions -- References -- ch. 10 Thermodynamic Behaviour of Fluids near Critical Points / Mikhail A. Anisimov -- 10.1. Introduction -- 10.2. General Theory of Critical Behaviour -- 10.2.1. Scaling Fields, Critical Exponents, and Critical Amplitudes -- 10.2.2. Parametric Equation of State -- 10.3. One-Component Fluids -- 10.3.1. Simple Scaling -- 10.3.2. Revised Scaling -- 10.3.3. Complete Scaling -- 10.3.4. Vapour-Liquid Equilibrium -- 10.3.5. Symmetric Corrections to Scaling -- 10.4. Binary Fluid Mixtures -- 10.4.1. Isomorphic Critical Behaviour of Mixtures -- 10.4.2. Incompressible Liquid Mixtures -- 10.4.3. Weakly Compressible Liquid Mixtures -- 10.4.4. Compressible Fluid Mixtures -- 10.4.5. Dilute Solutions -- 10.5. Crossover Critical Behaviour -- 10.5.1. Crossover from Ising-like to Mean-Field Critical Behaviour.
10.5.2. Effective Critical Exponents -- 10.5.3. Global Crossover Behaviour of Fluids -- 10.6. Discussion -- Acknowledgements -- References -- ch. 11 Phase Behaviour of Ionic Liquid Systems / Cor J. Peters -- 11.1. Introduction -- 11.2. Phase Behaviour of Binary Ionic Liquid Systems -- 11.2.1. Phase Behaviour of (Ionic Liquid + Gas Mixtures) -- 11.2.2. Phase Behaviour of (Ionic Liquid + Water) -- 11.2.3. Phase Behaviour of (Ionic Liquid + Organic) -- 11.3. Phase Behaviour of Ternary Ionic Liquid Systems -- 11.3.1. Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) -- 11.3.2. Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) -- 11.3.3. Phase Behaviour of (Ionic Liquid + Water + Alcohol) -- 11.3.4. Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures -- 11.4. Modeling of the Phase Behaviour of Ionic Liquid Systems -- 11.4.1. Molecular Simulations -- 11.4.2. Excess Gibbs-energy Methods -- 11.4.3. Equation of State Modeling -- 11.4.4. Quantum Chemical Methods -- References -- ch. 12 Multi-parameter Equations of State for Pure Fluids and Mixtures / Roland Span.
12.1. Introduction -- 12.2. The Development of a Thermodynamic Property Formulation -- 12.3. Fitting an Equation of State to Experimental Data -- 12.3.1. Recent Nonlinear Fitting Methods -- 12.4. Pressure-Explicit Equations of State -- 12.4.1. Cubic Equations -- 12.4.2. The Benedict-Webb-Rubin Equation of State -- 12.4.3. The Bender Equation of State -- 12.4.4. The Jacobsen-Stewart Equation of State -- 12.4.5. Thermodynamic Properties from Pressure-Explicit Equations of State -- 12.5. Fundamental Equations -- 12.5.1. The Equation of Keenan, Keyes, Hill, and Moore -- 12.5.2. The Equations of Haar, Gallagher, and Kell -- 12.5.3. The Equation of Schmidt and Wagner -- 12.5.4. Reference Equations of Wagner -- 12.5.5. Technical Equations of Span and of Lemmon -- 12.5.6. Recent Equations of State.
Note continued--
13.6. Concluding Remarks -- References -- ch. 14 Applied Non-Equilibrium Thermodynamics / Dick Bedeaux -- 14.1. Introduction -- 14.1.1. A Systematic Thermodynamic Theory for Transport -- 14.1.2. On the Validity of the Assumption of Local Equilibrium -- 14.1.3. Concluding remarks -- 14.2. Fluxes and Forces from the Second Law of Thermodynamics -- 14.2.1. Continuous phases -- 14.2.2. Maxwell-Stefan Equations -- 14.2.3. Discontinuous Systems -- 14.2.4. Concluding Remarks -- 14.3. Chemical Reactions -- 14.3.1. Thermal Diffusion in a Reacting System -- 14.3.2. Mesoscopic Description Along the Reaction Coordinate -- 14.3.3. Heterogeneous Catalysis -- 14.3.4. Concluding Remarks -- 14.4. The Path of Energy-Efficient Operation -- 14.4.1. An Optimisation Procedure -- 14.4.2. Optimal Heat Exchange -- 14.4.3. The Highway Hypothesis for a Chemical Reactor -- 14.4.4. Energy-Efficient Production of Hydrogen Gas -- 14.4. Conclusions -- References.

Includes bibliographical references and index.

Machine generated contents note: ch. 1 Introduction / J. Peters -- References -- ch. 2 Fundamental Considerations / Cor J. Peters -- 2.1. Introduction -- 2.2. Basic Thermodynamics -- 2.2.1. Homogeneous Functions -- 2.2.2. Thermodynamic Properties from Differentiation of Fundamental Equations -- 2.3. Deviation Functions -- 2.3.1. Residual Functions -- 2.3.2. Evaluation of Residual Functions -- 2.4. Mixing and Departure Functions -- 2.4.1. Departure Functions with Temperature, Molar Volume and Composition as the Independent Variables -- 2.4.2. Departure Functions with Temperature, Pressure and Composition as the Independent Variables -- 2.5. Mixing and Excess Functions -- 2.6. Partial Molar Properties -- 2.7. Fugacity and Fugacity Coefficients -- 2.8. Activity Coefficients -- 2.9. The Phase Rule -- 2.10. Equilibrium Conditions -- 2.10.1. Phase Equilibria -- 2.10.2. Chemical Equilibria -- 2.11. Stability and the Critical State -- 2.11.1. Densities and Fields -- 2.11.2. Stability.

2.11.3. Critical State -- References -- ch. 3 The Virial Equation of State / J. P. Martin Trusler -- 3.1. Introduction -- 3.1.1. Temperature Dependence of the Virial Coefficients -- 3.1.2. Composition Dependence of the Virial Coefficients -- 3.1.3. Convergence of the Virial Series -- 3.1.4. The Pressure Series -- 3.2. Theoretical Background -- 3.2.1. Virial Coefficients of Hard-Core-Square-Well Molecules -- 3.3. Thermodynamic Properties of Gases -- 3.3.1. Perfect-gas and Residual Properties -- 3.3.2. Helmholtz Energy and Gibbs Energy -- 3.3.3. Perfect-Gas Properties -- 3.3.4. Residual Properties -- 3.4. Estimation of Second and Third Virial Coefficients -- 3.4.1. Application of Intermolecular Potential-energy Functions -- 3.4.2. Corresponding-states Methods -- References -- ch. 4 Cubic and Generalized van der Waals Equations of State / Ioannis G. Economou -- 4.1. Introduction -- 4.2. Cubic Equation of State Formulation -- 4.2.1. The van der Waals Equation of State (1873) -- 4.2.2. The Redlich and Kwong Equation of State (1949).

4.2.3. The Soave, Redlich and Kwong Equation of State (1972) -- 4.2.4. The Peng and Robinson Equation of State (1976) -- 4.2.5. The Patel and Teja (PT) Equation of State (1982) -- 4.2.6. The α Parameter -- 4.2.7. Volume Translation -- 4.2.8. The Elliott, Suresh and Donohue (ESD) Equation of State (1990) -- 4.2.9. Higher-Order Equations of State Rooted to the Cubic Equations of State -- 4.2.10. Extension of Cubic Equations of State to Mixtures -- 4.3. Applications -- 4.3.1. Pure Components -- 4.3.2. Oil and Gas Industry -- Hydrocarbons and Petroleum Fractions -- 4.3.3. Chemical Industry -- Polar and Hydrogen Bonding Fluids -- 4.3.4. Polymers -- 4.3.5. Transport Properties -- 4.4. Conclusions -- References -- ch. 5 Mixing and Combining Rules / Stanley I. Sandler -- 5.1. Introduction -- 5.2. The Virial Equation of State -- 5.3. Cubic Equations of State -- 5.3.1. Mixing Rules -- 5.3.2. Combining Rules -- 5.3.3. Non-Quadratic Mixing and Combining Rules -- 5.3.4. Mixing Rules that Combine an Equation of State with an Activity-Coefficient Model.

5.4. Multi-Parameter Equations of State -- 5.4.1. Benedict, Webb, and Rubin Equation of State -- 5.4.2. Generalization with the Acentric Factor -- 5.4.3. Helmholtz-Function Equations of State -- 5.5. Mixing Rules for Hard Spheres and Association -- 5.5.1. Mixing and Combining Rules for SAFT -- 5.5.2. Cubic Plus Association Equation of State -- References -- ch. 6 The Corresponding-States Principle / James F. Ely -- 6.1. Introduction -- 6.2. Theoretical Considerations -- 6.3. Determination of Shape Factors -- 6.3.1. Other Reference Fluids -- 6.3.2. Exact Shape Factors -- 6.3.3. Shape Factors from Generalized Equations of State -- 6.4. Mixtures -- 6.4.1. van der Waals One-Fluid Theory -- 6.4.2. Mixture Corresponding-States Relations -- 6.5. Applications of Corresponding-States Theory -- 6.5.1. Extended Corresponding-States for Natural Gas Systems -- 6.5.2. Extended Lee-Kesler -- 6.5.3. Generalized Crossover Cubic Equation of State -- 6.6. Conclusions -- References -- ch. 7 Thermodynamics of Fluids at Meso and Nano Scales / Christopher E. Bertrand.

7.1. Introduction -- 7.2. Thermodynamic Approach to Meso-Heterogeneous Systems -- 7.2.1. Equilibrium Fluctuations -- 7.2.2. Local Helmholtz Energy -- 7.3. Applications of Meso-Thermodynamics -- 7.3.1. Van der Waals Theory of a Smooth Interface -- 7.3.2. Polymer Chain in a Dilute Solution -- 7.3.3. Building a Nanoparticle Through Self Assembly -- 7.3.4. Modulated Fluid Phases -- 7.4. Meso-Thermodynamics of Criticality -- 7.4.1. Critical Fluctuations -- 7.4.2. Scaling Relations -- 7.4.3. Near-Critical Interface -- 7.4.4. Divergence of Tolman's Length -- 7.5. Competition of Meso-Scales -- 7.5.1. Crossover to Tricriticality in Polymer Solutions -- 7.5.2. Tolman's Length in Polymer Solutions -- 7.5.3. Finite-size Scaling -- 7.6. Non-Equilibrium Meso-Thermodynamics of Fluid Phase Separation -- 7.6.1. Relaxation of Fluctuations -- 7.6.2. Critical Slowing Down -- 7.6.3. Homogeneous Nucleation -- 7.6.4. Spinodal Decomposition -- 7.7. Conclusion -- References -- ch. 8 SAFT Associating Fluids and Fluid Mixtures / Amparo Galindo.

8.1. Introduction -- 8.2. Statistical Mechanical Theories of Association and Wertheim's Theory -- 8.3. SAFT Equations of State -- 8.3.1. SAFT-HS and SAFT-HR -- 8.3.2. Soft-SAFT -- 8.3.3. SAFT-VR -- 8.3.4. PC-SAFT -- 8.3.5. Summary -- 8.4. Extensions of the SAFT Approach -- 8.4.1. Modelling the Critical Region -- 8.4.2. Polar Fluids -- 8.4.3. Ion-Containing Fluids -- 8.4.4. Modelling Inhomogeneous Fluids -- 8.4.5. Dense Phases: Liquid Crystals and Solids -- 8.5. Parameter Estimation: Towards more Predictive Approaches -- 8.5.1. Pure-component Parameter Estimation -- 8.5.2. Use of Quantum Mechanics in SAFT Equations of State -- 8.5.3. Unlike Binary Intermolecular Parameters -- 8.6. SAFT Group-Contribution Approaches -- 8.6.1. Homonuclear Group-Contribution Models in SAFT -- 8.6.2. Heteronuclear Group Contribution Models in SAFT -- 8.7. Concluding Remarks -- References -- ch. 9 Polydisperse Fluids / Dieter Browarzik -- 9.1. Introduction -- 9.2. Influence of Polydispersity on the Liquid + Liquid Equilibrium of a Polymer Solution.

9.3. Approaches to Polydispersity -- 9.3.1. The Pseudo-component Method -- 9.3.2. Continuous Thermodynamics -- 9.4. Application to Real Systems -- 9.4.1. Polymer Systems -- 9.4.2. Petroleum Fluids, Asphaltenes, Waxes and Other Applications -- 9.5. Conclusions -- References -- ch. 10 Thermodynamic Behaviour of Fluids near Critical Points / Mikhail A. Anisimov -- 10.1. Introduction -- 10.2. General Theory of Critical Behaviour -- 10.2.1. Scaling Fields, Critical Exponents, and Critical Amplitudes -- 10.2.2. Parametric Equation of State -- 10.3. One-Component Fluids -- 10.3.1. Simple Scaling -- 10.3.2. Revised Scaling -- 10.3.3. Complete Scaling -- 10.3.4. Vapour-Liquid Equilibrium -- 10.3.5. Symmetric Corrections to Scaling -- 10.4. Binary Fluid Mixtures -- 10.4.1. Isomorphic Critical Behaviour of Mixtures -- 10.4.2. Incompressible Liquid Mixtures -- 10.4.3. Weakly Compressible Liquid Mixtures -- 10.4.4. Compressible Fluid Mixtures -- 10.4.5. Dilute Solutions -- 10.5. Crossover Critical Behaviour -- 10.5.1. Crossover from Ising-like to Mean-Field Critical Behaviour.

10.5.2. Effective Critical Exponents -- 10.5.3. Global Crossover Behaviour of Fluids -- 10.6. Discussion -- Acknowledgements -- References -- ch. 11 Phase Behaviour of Ionic Liquid Systems / Cor J. Peters -- 11.1. Introduction -- 11.2. Phase Behaviour of Binary Ionic Liquid Systems -- 11.2.1. Phase Behaviour of (Ionic Liquid + Gas Mixtures) -- 11.2.2. Phase Behaviour of (Ionic Liquid + Water) -- 11.2.3. Phase Behaviour of (Ionic Liquid + Organic) -- 11.3. Phase Behaviour of Ternary Ionic Liquid Systems -- 11.3.1. Phase Behaviour of (Ionic Liquid + Carbon Dioxide + Organic) -- 11.3.2. Phase Behaviour of (Ionic Liquid + Aliphatic + Aromatic) -- 11.3.3. Phase Behaviour of (Ionic Liquid + Water + Alcohol) -- 11.3.4. Phase Behaviour of Ionic Liquid Systems with Azeotropic Organic Mixtures -- 11.4. Modeling of the Phase Behaviour of Ionic Liquid Systems -- 11.4.1. Molecular Simulations -- 11.4.2. Excess Gibbs-energy Methods -- 11.4.3. Equation of State Modeling -- 11.4.4. Quantum Chemical Methods -- References -- ch. 12 Multi-parameter Equations of State for Pure Fluids and Mixtures / Roland Span.

12.1. Introduction -- 12.2. The Development of a Thermodynamic Property Formulation -- 12.3. Fitting an Equation of State to Experimental Data -- 12.3.1. Recent Nonlinear Fitting Methods -- 12.4. Pressure-Explicit Equations of State -- 12.4.1. Cubic Equations -- 12.4.2. The Benedict-Webb-Rubin Equation of State -- 12.4.3. The Bender Equation of State -- 12.4.4. The Jacobsen-Stewart Equation of State -- 12.4.5. Thermodynamic Properties from Pressure-Explicit Equations of State -- 12.5. Fundamental Equations -- 12.5.1. The Equation of Keenan, Keyes, Hill, and Moore -- 12.5.2. The Equations of Haar, Gallagher, and Kell -- 12.5.3. The Equation of Schmidt and Wagner -- 12.5.4. Reference Equations of Wagner -- 12.5.5. Technical Equations of Span and of Lemmon -- 12.5.6. Recent Equations of State.

Note continued--

13.6. Concluding Remarks -- References -- ch. 14 Applied Non-Equilibrium Thermodynamics / Dick Bedeaux -- 14.1. Introduction -- 14.1.1. A Systematic Thermodynamic Theory for Transport -- 14.1.2. On the Validity of the Assumption of Local Equilibrium -- 14.1.3. Concluding remarks -- 14.2. Fluxes and Forces from the Second Law of Thermodynamics -- 14.2.1. Continuous phases -- 14.2.2. Maxwell-Stefan Equations -- 14.2.3. Discontinuous Systems -- 14.2.4. Concluding Remarks -- 14.3. Chemical Reactions -- 14.3.1. Thermal Diffusion in a Reacting System -- 14.3.2. Mesoscopic Description Along the Reaction Coordinate -- 14.3.3. Heterogeneous Catalysis -- 14.3.4. Concluding Remarks -- 14.4. The Path of Energy-Efficient Operation -- 14.4.1. An Optimisation Procedure -- 14.4.2. Optimal Heat Exchange -- 14.4.3. The Highway Hypothesis for a Chemical Reactor -- 14.4.4. Energy-Efficient Production of Hydrogen Gas -- 14.4. Conclusions -- References.

Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.

Powered by Koha